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One of the rites of passage of any engineer learning 
how to design post-tensioned concrete is to understand 
the meaning and usage of secondary moments. There is a 
vast amount of information available on calculating and 
applying secondary moments. Many engineers follow 
a traditional approach for designing post-tensioned 
members using secondary moments, which can result 
in code-compliant and safe designs. This document will 
provide a deeper understanding of where this approach 
came from, why and when it works, and demonstrate 
that it is only one approach for designing post-tensioned 
members.

INTRODUCTION
Post-tensioning is one of the strongest and most resil-

ient ways to reinforce concrete. However, the calculation 
of sectional strength in post-tensioned members is slightly 
more complicated than that of a corresponding rein-
forced concrete member due to the presence of so-called 
secondary effects. One of the first things designers are 
taught is that post-tensioned members require the consid-
eration of secondary moments, often without a detailed 
explanation of why and when they are necessary.  

ACI 318-191 provides definitions for secondary effects 
that can become confusing to apply in some common situ-
ations. Situations that require caution include the presence 
of rigid columns or walls, which can restrain shortening, 
or in continuum structure analysis such as finite element 
analysis of floors. The use of secondary effects will be clari-
fied so that the reader can understand why they are used 
and how they can be included appropriately in design.  

Note: The sign conventions used throughout this document 
are that positive moments induce tension on the bottom of the 
member. Axial forces and stresses are tension positive, compres-
sion negative.

ENSURING FLEXURAL STRENGTH CAPACITY 
OF CONCRETE MEMBERS

 The flexural strength capacity of concrete members 
must be calculated to ensure that they have adequate 
strength to resist the applied demand loads. This normally 
occurs by selecting appropriate cross sections in the floor, 
calculating the demand forces on those cross sections 
caused by externally applied loads, and calculating the 
capacity of the cross sections using methods permitted by 
the building code or standard.

Flexural and axial strength in concrete cross sections 
is normally satisfied by ensuring that the internal material 
stresses can resist the externally applied loads. The analysis 
for shallow members is carried out assuming plane sections 
remain plane and using strain compatibility to calculate 
the material strains and stresses. In non-prestressed rein-
forced concrete cross sections, the lever arm between 
the concrete and reinforcing bar remains approximately 
constant, while, with increasing load, the stresses in both 
the steel and concrete increase proportionally (Fig. 1(a) 
to (c)). The ultimate state is reached when the strain in 
the concrete reaches a limit strain that precludes crushing 
of the compression side, with the reinforcing bar normally 
yielding in tension (Fig. 1(d)). The distance between the 
resultant concrete compression force and the resultant 
reinforcing bar tension force at the ultimate state is the 
lever arm, z. For reinforced concrete, the nominal flexural 
capacity with no external axial load is then calculated as

Note from the editors: This paper presents a different 
approach to understanding the meaning and use of 
secondary moments. The process described in no way 
intends to negate code-required calculations or loading 
considerations—it provides a different calculation 
method resulting in the same end result. This method 
is suitable for use with computer methods, provides an 
alternate means to understanding secondary moments, 
and provides an alternate approach for designing post-
tensioned members.
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 Mn0 = As fyz (1)

where As is the area of non-pre-
stressed reinforcement;

fy is the yield stress of non-prestressed 
reinforcement; and

z is the depth between the reinforce-
ment and resultant concrete com-
pression force.

The flexural strength behavior of 
post-tensioned concrete members 
is quite different from reinforced 
concrete. As the tendons are stressed, 
beneficial compression stresses are 
introduced into the concrete. This 
optimizes the material behavior 
because concrete is strong in compres-
sion but relatively weak in tension. 
Stressing of the tendons induces an 
initial state of stress in the concrete 
(Fig. 2(a)) that includes a flexural 
component and a uniform precom-
pression component. As external 
gravity loads are increased, the 
concrete compression stress resultant 
shifts away from the tendon tension force, thereby increasing 
the lever arm between the two. At the point where the exter-
nally applied gravity moment exactly counteracts the flexural 
prestress component, the compression stress in the concrete 
is uniform (Fig. 2(b)). As more load is applied, additional 
strength is derived from the shifting of the compression 
stress resultant from the centroid of the section to the final 
compression block resultant location (Fig. 2(c) and (d)). This 
behavior is characterized by the tension and compression 
forces remaining approximately constant, while the lever arm 
increases with applied load.

When the tendon strains get large as the ultimate 
load is approached, the tendon stress also increases from 
the effective stress fse to the ultimate tendon stress fps 
(Fig. 2(d)). These stress increases are based upon strain 
compatibility for bonded tendons and are approximately 
proportional to the strain increase for unbonded tendons. 
ACI 318-191 provides equations to predict the ultimate 
tendon stress, fps.    

When calculating the flexural strength of post-
tensioned cross sections, the entire tendon stress is 

normally included in the strain compatibility calculations. 
The equation that is used to calculate the nominal flexural 
capacity with no external axial loads using the traditional 
approach is often taken as

 Mn0′ = Apsfpsz (2)

where Aps is the area of prestressed reinforcement; and

fps is the ultimate stress of the prestressing strand.

What are secondary moments and why are they 
necessary?

Equation (2) looks very similar to Eq. (1) and implies 
that the presence of a stressed strand contributes to the 
strength of post-tensioned sections in the same way 
that the presence of reinforcing bar contributes to the 
strength of reinforced concrete sections. However, this 
does not represent the actual capacity behavior. Most of 

Fig. 2—Post-tensioned concrete strength behavior.

Fig. 1—Reinforced concrete strength behavior.
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the strength of post-tensioned sections is derived from 
the beneficial prestrains (initial compression strains) in 
the concrete generated by stressing the strands and is not 
directly related to the presence of a stressed strand. This 
can be illustrated using a simple, yet contrived example.

Consider a simply supported beam with a rectangular cross 
section that is pre-cracked through the entire depth at midspan 
(Example 1). The pre-cracked condition mimics the design 
assumption that ignores the tensile strength of concrete in cross 
section calculations (ACI 318-19, Section 22.2.2.2). A strand 
can be introduced in this cross section and anchored to an exte-
rior fixed structure. For simplicity, assume that the strand is in 
a frictionless sheathing, and as such, the strand stress does not 
increase significantly with increasing load. For this example, 
the catenary action of the strand is also ignored as this behavior 
is generally not included in flexural strength calculations.

The free-body diagram in Example 1(b) demon-
strates that there is no way to generate any compression 
in the concrete, and hence no way to generate any flexural 
capacity. This simple example illustrates that the presence 
of a stressed strand in a concrete cross section does not 
directly contribute to the flexural strength. Using Eq. (2), 
which uses the entire strand stress, therefore requires addi-
tional modifications to maintain the equilibrium of the 
demand versus capacity comparison. These modifications, 
as may be guessed, are referred to as secondary effects. 

POST-TENSIONED FLEXURAL STRENGTH CA-
PACITY—ACI SECONDARY FORCE APPROACH 

ACI 318-19 Section 22.2.1.3 prescribes that the effec-
tive stress in the strand fse be included in the cross section 
strain compatibility calculations in addition to the increase 
in strand stress from fse to fps as the behavior approaches 
ultimate. Secondary effects as defined by ACI are the set of 

forces induced by the resistance caused by the restraining 
effect of the supports during the stressing process. They are 
applied to the demand force, and not the resistance. Because 
Eq. (2) is only valid with the inclusion of secondary effects, 
it is considered a pseudo-capacity and denoted by the term 
Mn0′ to distinguish it from Mn0 calculated by Eq. (1), which 
is considered a true capacity that can be compared directly 
with the demand forces caused by externally applied loads, 
Mu. The idea behind the ACI definition is that the applica-
tion of prestressing to the member can induce support reac-
tions, which should be treated as additional external loads 
on the member. This definition of secondary effects, while 
perhaps appropriate for simple isolated frame structures, 
can be confusing and in many cases incorrect to apply to 
more complicated structures that are nowadays common, 
like finite element analysis of entire floors. The reader is 
referred to a previous publication by Bommer2 for a more 
thorough discussion of this topic.

Application of the ACI definitions to Example 1 can 
become very confusing. The member being analyzed does 
not have any support reactions caused by prestressing, so 
the conclusion could be made that there are no secondary 
effects by the ACI definitions. However, this would result 
in the calculation of significant flexural capacity on this 
cross section using Eq. (2), which is obviously incorrect. 
This example demonstrates the potential confusion caused 
by using the ACI definitions in some cases, and for this 
reason, it is recommended that the ACI definition for 
secondary moments be modified.  

POST-TENSIONED FLEXURAL STRENGTH CA-
PACITY—NEW EQUILIBRIUM SOLUTION

Figure 2 illustrates that a significant portion of the 
strength of post-tensioned cross sections is a function of 

the internal compression strains and 
stresses generated from stressing the 
strands. The strength contribution 
from Fig. 2(a) to (b) is created from 
the counteraction of the beneficial 
flexural effects caused by stressing 
the tendons. These beneficial flex-
ural effects could be generated from 
drape on the strands or by eccentric 
anchorage locations. There is an 
additional strength contribution 
from Fig. 2(b) to (d) as the uniform 
precompression stress resultant shifts 
from the centroid of the cross section 
to the ultimate compression block Example 1—Tendon anchored externally.



TECHNICAL PAPERS

PTI JOURNAL | Issue 1 2022   29

and the prestressing strand. Although the strand itself 
again does not interact with the beam, the introduction 
of the beneficial compression strains by the anchorages 
generates considerable strength, which can be calculated 
using the first two terms of Eq. ( 3). Because there is no 
friction, the strand stress will not increase substantially due 
to loading, and it can be assumed that fps = fse. The resulting 
flexural strength capacity of Example 2 can be calculated 
using Eq. (3), realizing that –eC is equivalent to (z – e)

 Mn = –Mbal + PbaleC = Pe + P(z – e) = Pz 

Lastly, consider a third example where instead of 
a strand being present at all, two hydraulic jacks apply 
a force P to the ends of the beam at the strand location 
from Example 2. It should be clear that, despite the lack 
of presence of any strands, this beam will have identical 
flexural strength capacity as Example 2, which can also be 
calculated using the first two terms of Eq. (3), with the 
jacking forces applied before the application of external 
load treated as a beneficial prestress force. In this case, Mbal 
= –Pe and Pbal = –P, and the resulting capacity is Mn = Pz.

The previous three examples illustrate that the strength 
of prestressed members is derived primarily through 
beneficial prestrains and not by the presence of stressed 
strands in the cross section. This derivation also proves 
the concept of linear transformation presented by Lin and 
Burns.3 This concept states that any transformation of cable 
profiles that does not result in any change in the calculated 
balanced loading also does not impact the resulting internal 
strength. If an interior support profile elevation is raised or 

resultant location. Finally, there is a third contribution 
from Fig. 2(c) to (d) generated from the increase in strand 
from the effective prestress level, fse, to the ultimate strand 
strength fps. A simple equilibrium equation for the flexural 
strength capacity can be derived from these three compo-
nent behaviors as

 Mn0 = –Mbal + PbaleC + Aps(fps – fse)z (3)

where Mbal is the balanced moment; 

Pbal is the balanced axial force (resultant precompression); 

eC is the distance from the cross section centroid to the 
concrete compression block resultant (taken as positive if 
the resultant is below the centroid and negative if above 
the centroid); 

and fse is the effective stress of the prestressing strand (after 
stressing). 

The balanced moment and axial force are calculated by 
theoretically removing the tendons from the member and 
replacing them with equivalent (balanced) loads, and then 
analyzing the structure for those loads. This equation is 
quite different from Eq. (1) for reinforced concrete and 
Eq. (2) for post-tensioned concrete. Equation (3), which 
is applicable to members without external net axial loads, 
can be compared directly with demand moments due to 
externally applied forces, Mu. Applying this equation to 
Example 1, Mbal and Pbal are zero because the tendon im-
parts no forces or prestrains on the 
member. There is also no increase in 
strand stress so fps = fse (based on the 
frictionless assumption). As such, 
Eq. (3) correctly calculates the flex-
ural strength capacity of Example 1 
as Mn = 0.

Now consider a second example 
identical to Example 1, but instead, 
with the strand anchored at the ends 
of the beam. In this case, the end 
anchorages introduce a compression 
P to the beam in addition to a balanced 
moment –Pe caused by the strand 
eccentricity, where e is the depth 
between the centroid of the section Example 2—Tendon anchored at beam ends.



TECHNICAL PAPERS

30  Issue 1 2022 | PTI JOURNAL

lowered, and the corresponding midspan profiles are adjusted 
so that the resulting balanced load is unchanged, the resulting 
flexural strength capacity is also unchanged (if the change in 
tendon stress from fse to fps is ignored). This further illustrates 
the independence between the flexural strength capacity and 
the location or presence of the strands.

RECOMMENDED SECONDARY FORCE AP-
PROACH

This section will develop a secondary force approach that 
is both consistent with the new equilibrium approach and the 
intent of ACI 318, and is therefore suitable for use in design.

Equation (3) can be algebraically manipulated and 
expressed as

 Mn0 = Aps fpsz – Msec + PseceC (4)

where

 Msec (secondary moment) = Mbal – Mp (5)

 Psec (secondary axial force) = Pbal – Pp (6)

 Mp (primary moment) = –Apsfsee 

 Pp (primary axial force) = –Aps fse 

It should be apparent from Eq. (4) that a pseudo-capacity 
Mn0′ calculated using Eq. (2), in addition to being modified by 
the secondary moment, must also be modified by the secondary 
axial force, Psec. Psec corrects for any difference between the 
primary strand force in the cross section and the actual precom-
pression in the concrete generated from stressing the strands. 
Equation (2) is therefore only applicable when the resultant 
precompression in the cross section equals the primary axial 
force from the tendons. This allows a more general expression 
to be developed for the pseudo-capacity of post-tensioned 
sections, Mn0′, including the effective stress of the strand

 Mn0′ = Aps fpsz + PseceC (7)

Equation (7) should be used instead of Eq. (2) in the 
calculation of the pseudo-capacity of cross sections used 
with the secondary force approach. In cases where the resul-
tant precompression in the cross section equals the primary 
axial force of the tendons, Psec = 0 and Eq. (7) reduces to 
Eq. (2). Substituting Eq. (7) into (4) arrives at the funda-
mental relationship between the new equilibrium capacity 
Mn0 and the pseudo-capacity Mn0′ that is calculated with the 
secondary force approach. Equation (7) is compatible with 
ACI 318-19 Section 22.2.1.3 and is suitable for use in design.

 Mn0 = Mn0′ – Msec (8)

CROSS SECTIONS WITH 
BOTH POST-TENSIONING 
AND NON-PRESTRESSED 
REINFORCEMENT

The previous derivations and 
examples have included only non-
prestressed reinforcement or post-
tensioning and have only been appli-
cable when there are no net external 
axial loads. Most cross sections that are 
designed in post-tensioned structures 
contain both prestressing strands and 
non-prestressed reinforcement. Addi-
tionally, there is a tight interaction 
between flexural and axial demand and Example 3—Force P applied by hydraulic jacks.
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capacity, as explained in more detail in Appendix A. Equation 
(3) can be extended to consider both post-tensioning and 
non-prestressed reinforcement, along with any net external 
axial loads N as

Eq. (9) (new equilibrium approach)

 

( ) ( )
, ,

, , , , ,
1 1

n pt n re

n bal bal C ps i ps i se i i s j s j j
i j
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= =
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(9)

Eq. (7) can also be extended similarly as

Eq. (10) (secondary force approach)

 ( )
, ,

, , , ,
1 1

n pt n re

n ps i ps i i s j s j j C
i j

M A f z A f z P N e
= =

′ = + + +∑ ∑ sec
 

(10)

When comparing these calculated flexural capaci-
ties to the demand flexure caused by external loads, ACI 
318-19 requires that a strength reduction factor, φ, be 
applied to the calculated capacities. In typical calcula-
tions, this would be applied to Mn. Using the secondary 
effects approach, this is instead applied to the pseudo-
capacity, Mn′, while the secondary effects (Msec) get 
applied a factor of 1.0. This small difference is not rele-
vant to the overall behavior described in this document, 
and for this reason, the factor φ is not included in any 
of the equations and example calculations presented. 
However, it should be included as appropriate in real 
design calculations.

In determining the adequacy of a given design, the 
flexural capacity must be greater than or equal to the flex-
ural demand.

 Mu ≤ Mn (11)

The relationship between Eq. (9) and (10) can be 
expressed similarly to Eq. (8) as

 Mn = Mn′ – Msec (12)

Substituting Eq. (12) into (11) and rearranging, the 
demand versus capacity equations can be expressed as

 Mu + Msec ≤ Mn′ (13)

 Mn′ = Mn + Msec (14)

Equation (13), used along with Eq. (10) for Mn′ and 
Eq. (5) for Msec, is the demand versus capacity relationship 
recommended for use with the secondary force approach 
for design. This provides a straightforward method to 
calculate secondary forces, which takes the ambiguity out 
of the ACI definitions for secondary forces, is consistent 
with the ACI definitions, and is generally applicable.  

DIFFERENCE BETWEEN NEW EQUILIBRIUM 
AND RECOMMENDED SECONDARY FORCE 
APPROACH

The difference between the new equilibrium behavior 
and the recommended secondary effects approach is 
simply a numerical manipulation. It has been demon-
strated that the real capacity behavior predicted by the 
new equilibrium equation is a function of the beneficial 
prestrain in the concrete generated by the act of stressing 
the strands. The new equilibrium approach can make it 
easier to intuitively understand the strength behavior in 
complex cases as it doesn’t require any special consider-
ations such as secondary effects. If the calculated flexural 
strength uses the entire ultimate stress in the strand, it is 
considered a pseudo-capacity that requires adjustments 
to get the correct demand versus capacity comparison. 
These adjustments, in the way of secondary forces, essen-
tially move the secondary forces to the demand load side 
of the equation. The secondary force approach effectively 
offsets both the flexural capacity and the flexural demand 
by the secondary moment, as illustrated by Eq. (13) 
and (14). The physical meaning is simply the choice to 
apply the secondary effects along with the applied loads 
instead of in the calculation of the resistance at the time 
of stressing when they actually occur.

DESIGN EXAMPLES
Note: The reader is reminded that the strength reduction 

factor, φ, is not included in the following examples for the sake of 
clarity, although this factor should always be incorporated into real 
analysis and designs.
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Pp = –P; Pbal = –P; Psec = Pbal – Pp = 0

For comparison with the new equilibrium capacity 
calculated in Example 2, the positive moment capacity is 
calculated using Eq. (7).

Mn′+ = Apsfsez = Pz

Msec = Mbal – Mp = –Pe – (–Pe) = 0

Mu ≤ Pz (positive moment)

which is identical to the result calculated using the new 
equilibrium equation (because the secondary effects are 
zero in this example).

Example 3—secondary force approach
This example does not have any tendons, so Mp = Pp 

= 0. The balanced forces are calculated from the loads 
applied by the hydraulic jacks

Pbal = –P; Mbal = –Pe; Psec = Pbal – Pp = –P

This case has a secondary axial compression, which 
contributes to the flexural strength. For comparison with 
the new equilibrium capacity calculated in Example 3, the 
positive moment capacity is calculated using Eq. (7).

Mn′+ = –(Psec)(z – e) = Pz – Pe

Msec = Mbal – Mp = –Pe

Mu – Pe ≤ Pz – Pe

Mu ≤ Pz (positive moment)

As expressed earlier, both the demand and the capacity 
are offset by the secondary moment –Pe, which results in 

Examples 1 to 3 were originally calculated using the 
new equilibrium Eq. (3). Calculate the demand versus 
capacity ratios using the secondary effects approach 
(Eq. (7)).  

Example 1—secondary force approach
Because this cross section contains a tendon but 

has no precompression, there is a secondary axial  
force that needs to be considered. The pseudo-capac-
ities Mn′

+ and Mn′
– can be calculated using Eq. (7) and 

using the same assumption in the original example that 
fps = fse.

 Pp = –P; Pbal = 0; Psec = Pbal – Pp = P 

 Mn′+ = Apsfsez – Psec(z – e) = Pz – Pz + Pe = Pe  

 Mn′– = –Apsfsez + Psec(z + e) = –Pz + Pz + Pe = Pe  

This further illustrates why this term is called a 
pseudo-capacity as it is obvious that this member has no 
real capacity. However, applying this pseudo-capacity 
with the required secondary moment results in the correct 
demand versus capacity ratio.

 Msec = Mbal – Mp = 0 – (–Pe) = Pe 

 Mu + Pe ≤ Pe (positive moment) 

  Mu + Pe ≥ Pe (negative moment) 

The only value of Mu that satisfies both the posi-
tive and negative moment equations is Mu = 0. As the 
new equilibrium equation does, the recommended 
secondary force approach also calculates the correct 
behavior that the application of any load will result in 
failure of the member.

Example 2—secondary force approach
Start by calculating the balanced, primary forces, and 

secondary axial force. Because the internal strand force 
is equal to the internal precompression resultant, the 
secondary axial force in this example is 0.
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an identical demand versus capacity comparison as the 
new equilibrium calculation.

Example 4—practical design comparing both methods
The following example illustrates the flexural strength 

calculations at the cross section at the interior support and 
midspan of a 12 in. width of an 8 in. thick one-way slab, fc′ = 
5 ksi, a uniform distributed load of wu = 0.200 klf (including 
self-weight), with a single one-half inch diameter unbonded 
monostrand with fse = 176.5 ksi and fps assumed to be 195 ksi, 
and fy of mild reinforcement of 60 ksi. 

The flexural strength at cross section 4A using Eq. (9) is

Mn = –Mbal + PbaleC + Aps(fps – fse)z + Asfyz

 
0.153 195 0.2 60

0.82in.
0.85 0.85 12 5c

C
a

b f
⋅ + ⋅

= = =
′⋅ ⋅ ⋅ ⋅

 z = –7 + (0.82/2) = –6.59 in.  

 ( )

0.824
6.59 6.59210.125 0.153 176.5 0.153 195 176.5 0.2 60 26.35 ft kip

12 12 12nM

 −  − − = − − ⋅ + − + ⋅ ⋅ = − ⋅
 

 
( )

0.824
6.59 6.59210.125 0.153 176.5 0.153 195 176.5 0.2 60 26.35 ft kip

12 12 12nM

 −  − − = − − ⋅ + − + ⋅ ⋅ = − ⋅

 
The flexural strength at cross section 4A using Eq. (10) is

Because Pbal = Pp, Psec = 0 

 Mn′ = (Apsfps + Asfy)z 

Mn′ = (0.153 ∙ 195 + 0.2 ∙ 60) ∙ (–6.59/12) = –22.97 ft∙kip

Msec = Mbal – Mp = 10.125 + 0.153 ∙ 176.5(–3/12) = 3.38 ft∙kip
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The results of the two methods can now be compared 
at section 4A

Method Mu, ft∙kip Mn, ft∙kip
Reserve 

capacity, ft∙kip
Eq. (9) (new 
equilibrium) –22.5 –26.35 3.85

Eq. (10) (secondary 
force) –19.12 –22.97 3.85

It should be apparent that the two approaches are mathe-
matically equivalent, so long as the secondary moments are 
included with the factored loads using the secondary force 
approach. Notice that, using Eq. (10), both the capacity 
and demand values are offset from the new equilibrium 
values by the magnitude of the secondary moment.

The flexural strength at cross section 4B using Eq. (9) 
is

Mn = –Mbal + PbaleC + Aps(fps – fse)z + Asfyz

 0.153 195
0.585 in.

0.85 0.85 12 5c

C
a

b f
⋅

= = =
′⋅ ⋅ ⋅ ⋅  

z = 7 – (0.585/2) = 6.71 in.

 ( )

0.5854
6.7125.69 0.153 176.5 0.153 195 176.5 15.62 ft kip

12 12nM

 − + 
 = − ⋅ + − = ⋅

 

 
( )

0.5854
6.7125.69 0.153 176.5 0.153 195 176.5 15.62 ft kip

12 12nM

 − + 
 = − ⋅ + − = ⋅

 

The flexural strength at cross section 4B using Eq. (10) is

Because Pbal = Pp, Psec = 0 

Mn′ = (Apsfps)z

Mn′ = (0.153 ∙ 195) ∙ (6.71/12) = 16.68 ft∙kip

Msec = Mbal – Mp = –5.69 + 0.153 ∙ 176.5(3/12) = 1.06 ft∙kip

The results of the two methods can now be compared 
at section 4B

Method
Mu, 

ft∙kip 
Mn, 

ft∙kip
Reserve 

capacity, ft∙kip
Eq. (9) (new equilibrium) 12.65 15.62 2.97
Eq. (10) (secondary force) 13.71 16.68 2.97

CONCLUSIONS
1. A new equation was derived using equilibrium to 

predict the strength capacity of post-tensioned 
sections. This capacity, Mn, is suitable for design 
and can be compared directly with factored 
demand loads, Mu, without any separate secondary 
force considerations.

2. The ACI 318 definitions for secondary forces in 
Sections 5.3.11 and 6.6.5.2 are too ambiguous and 
potentially confusing to apply correctly to modern 
analyses. For this reason, the ACI 318 definitions for 

secondary forces are not recommended 
for use in design. Instead, a definition for 
secondary forces was presented that is 
numerically consistent with the new equi-
librium equation and is consistent with 
the ACI approach. In this approach, the 
ultimate stress in the strand fps is included 
in the cross section strain compatibility 
calculations. The pseudo-capacity that 
is calculated using this approach, Mn′, 
must be used in conjunction with a 
demand that includes secondary force 
effects. This approach is suitable for 
design and usually more numerically 
convenient than the new equilibrium Fig. 4—Layout and moment diagram for Example 4.
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equation because it is more 
consistent with reinforced 
concrete strength capacity 
calculations. The author 
recommends that the ACI 
definitions that pertain 
to secondary forces be 
changed to more numeri-
cally consistent definitions 
such as those recommended 
in this document. The new 
equilibrium equation, while 
not recommended for daily 
design, may be helpful to 
visualize and understand the strength behavior in 
some conditions.

3. The mathematical difference between the new 
equilibrium approach and the secondary force 
approach is merely that the demand and capacity 
are both offset by the secondary moment, as illus-
trated by Eq. (13) and (14).
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APPENDIX A—INTERACTION BETWEEN 
FLEXURAL AND AXIAL FORCES

In a strain compatibility analysis, the compression 
strain is generally fixed and the tension strains are adjusted 
until the axial force resultant of the internal material stresses 
equals the externally applied demand axial force. The flexural 
capacity is then calculated from the integrated material stresses 
from the resulting strain condition. This illustrates the strong 
interaction between axial and flexural components that must 
be considered. Often in beams, the net axial force is zero, in 
which case the resultant compression force in the concrete 
equals the tension force in the reinforcement. However, if 
the demand forces include an external axial compression 
demand on the section, this must be considered in the equi-
librium of the strain compatibility calculation; the compres-
sion block becomes larger, and the flexural capacity increases. 

Conversely, if there is an external axial tension demand on 
the section, the compression block becomes smaller and the 
flexural capacity decreases. This is illustrated in Fig. A1. The 
value of Mn with a net axial tension N is

 Mn = Asfyz – NeC (A1)

where N is the net axial force demand on the section (ten-
sion positive, compression negative).

The second term in Eq. (A1) represents the flexural 
strength reduction caused by net tension, or the increase 
caused by net compression. Note that the lever arm may 
be slightly different due to the slightly different resultant 
concrete compression force depth.

Fig. A1—Internal forces from strain compatibility analysis.
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